
From Eqs. (2) and (3) we obtain 

s (0,40-~-~ q-O,59 ) (An-t-B).lO-t (4) 

With  t h e  a i d  o f  Eq. (4) one c a n  c a l c u l a t e  t h e  e f f e c t i v e  t h e r m a l  c o n d u c t i v i t y  c o e f f i c i e n t  
of aluminum oxide with various copper contents as a function of temperature without experi- 
mental study. For such a calculation only a knowledge of the copper content is required. 
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IDENTIFICATION OF A SPECIFIED THERMAL REGIME IN A STRUCTURE ON 

THE BASIS OF EXPERIMENTAL DATA OBTAINED IN OTHER REGIMES 

I. E. Balashova UDC 536.24  

A method is proposed for calculating the temperature at a given point of a com- 
plex structure with a specified heating regime on the basis of experimental data 
obtained in other regimes. 

During the development and testing of new equipment and the modernization of existing 
equipment operating at elevatedtemperatures, it is necessary to determine the temperature 
at individual points inside the structure in given thermal regimes. Difficulties in allowing 
for all features of heat transfer make it difficult to solve this problem by direct numerical 
methods through solution of the heat-conduction equation for complicated, multilayered struc- 
tures. The quality of the results obtained is significantly affected by the shortage -- and 
in some cases, complete lack -- of information on the laws of distribution of contact heat- 
transfer resistance between the layers and heat transfer in air gaps. 

In connection with this, it is very important to determine the temperature inside an ob- 
ject onthe basis of temperature data obtained during experiments in other heating regimes. 
Searches for a solution to this problem have led to the idea of replacing the actual complex 
structure by a simpler mathematical model with fewer layers characterized by a certain effec- 
tive heat-transfer coefficient [i, 2]. 

The method employed in [i] is based on the use of a so-called "reference" regime and con- 
version factor in the calculation of prescribed surface temperature regimes. The conversion 
factor is calculated from known empirical temperature data at a given point of the structure 
by analytical solution of a unidimensional heat-conduction equation for a one-layer wall. 
This method gives good results in several cases. However, it has certain limitations in 
terms of its application, indlucing the fact that it is possible to calculate only monotonic 
regimes the length z e of which does not exceed the length of the reference regime. 

Another study [2] proposed that the computational model be the heat-conduction equation 
for fewer number of layers of the same geometry, with a certain constant effective thermal 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 50, No. 3, pp. 471-476, March, 1986. 
Original article submitted January 14, 1985. 

346 0022-0841/86/5003-0346512.50 �9 1986 Plenum Publishing Corporation 



I 

17 

I 

i f [ 

T 

5O 

/00 

I % 

--f 

o--2 

0 2#0 460 720 ' 980 ~, 9 

Fig. 1 Fig. 2 

Fig. i. Diagram of multilayered cylindrical wall used for the 
numerical experiment: I) thermal insulation; II) metal; III) air. 

Fig. 2. Results of calculation to determine the dependence of 
temperature Tb, ~ on time T e, sec, in a quasisteady heating re- 
gime Tw, ~ i) experimental data; 2) theoretical relation. 

TABLE I. Values of Effective Thermal Conduc- 
tivity h e, W/m.deg, for a Point of a Structure 
with the Coordinate b = 0.026 m 

ce, see 
�9 T w ,  "C  

720 I200 1800 

100 
200 
300 
400 

5,134 
5,379 
5,855 
6,403 

4,629 
4,986 
5,618 
6,346 

4,389 
4,855 
5,651 
6,575 

conductivity h e for each layer. It was concluded from the study results that when it is ne- 
cessary to determine the temperature at one point rather than the entire temperature profile 
for the cross section, it is possible to replace the actual structure by a one-layer computa- 
tional model with a coefficient k e = const. 

This conclusion is in full accord with data we obtained during analysis of the results 
of calculation of heat transfer in a cylindrical multilayered wall with a mathematical model 
in the form of a unidimensional heat-conduction equation for a one-layer plane wall. Thus, 
in several cases where the method in [i] cannot be used, it is possible to solve the formula- 
ted problem by representing heat transfer in the structure by means of an abstract mathemati- 
cal model described by the heat-conduction equation: 

aT(x,  T) = ~ O'T(x, ~) (1) 
cP o% Ox~ ' 

0<~50<x<d, (2) 

T(x,  O)=f (x ) ,  O ~ x ~ d ,  

T (0, '~) = Tw (q:), q (d, x) = O, 0 ~ "~ ~ x e, (3) 

where cp = const, h e = const. 

Mathematical model (1)-(3) is used to identify the thermal regime of an actual structure 
at a specified point x = b, 0 < b < d by calculating the effective thermal conductivity h e = 
const. This effective thermal cond--uctivity ensures the prescribed empirical relation Te(b, ~) 
at this point. The coefficient k e is determined by solving the inverse coefficient problem 
of heat conduction using an iterativemethod for minimization of a functional 

dh = -~-- .I ITk (b, ~) - -  7 e (b, ~)]2 dx, (4) 
0 

where k is the number of the iteration. 
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Fig. 3. Result of calculation of the dependence of tem- 
perature T b on time r e with a nonsteady heating regime I 
(a) and II (b), Tw, ~ i~ experimefltal data; 2) theo- 
retical relation. 

TABLE 2. Values of Effective Thermal Conductivity le i for 
Calculating Nonsteady Regimes I and II. lei, W/m.deg! ~ei, 
sec 

Regime ~ '~1 -~? ~ I -~e2 -~3 Ee 

I 

II 
5,134 
6,346 

720 

1200 
6,438 I 2160 
5,134 1920 

4,989 
5,631 

3360 
3360 

The effective thermal conductivityl e is calculated from the formula 

where Pk is the direction of the slope calculated by the method of conjugate gradients [3] 
and ~k is the step of the slope, calculated from the condition 

Jk = mind(X~_l + =p~). (6) 

The gradient of the function J'k needed to calculate the direction of the slope is de- 
termined from the solution of the corresponding conjugate problem. Different methods of find- 
ing J'k and ~k are discussed in [4, 5]. 

The iteration performed to solve the inverse heat-conduction problem is stopped in ac- 
cordance with the condition 

where r is a small number dependent on the desired accuracy of the calculated result (one us- 
ually takes ~ = 0.001~ 

As a measure of adequacy of the calculated thermal conductivity le from the mathematical 
model and actual heat transfer at the specified point of the structure we take the absolute 
maximum deviation of the theoretical temperature from the experimental temperature: 

S = m a x  W(b, ~)--Te(b, ~)[. 
~ [o ,~  e ] 

It is understood that it is desirable to obtain a solution to the inverse problem that will 
be characterized by as small a value of S as possible. 

During the development of the above method, we studied the possibility of recalculating 
empirical data for quasisteady and nonsteady regimes of different duration. Here, we used 
mathematical model (i)-(3) to identify heat-transfer processes both in actual structures and 
in cylindrical multilayered mathematical models. 
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Analysis of the results of the identification obtained from laboratory and numerical 
experiments for quasisteady heating regimes showed the following. 

i. The value of thermal conductivity h e depends not only on the location of the test 
point of the structure x = b and the limiting temperature of the surface, but on the duration 
of the time interval for which the calculation was performed (Table i). 

2. The value of thermal conductivity %e is also affected by the temperature dependence 
on the initial section of the regime. Thus, a more adequate mathematical model could be ob- 
tained by increasing the accuracy of measurement on the initial section. At the same time, 
the calculations showed that it is possible to refine the model by means of a corresponding 
change in the temperature relation Te(b, T) on this section and a corresponding reduction in 
S. 

3. Model (1)-(3) makes it possible to sufficiently accurately identify unidimensional 
heat transfer in a multilayered structure. In the case of two- and three-dimensional heat 
transfer, a mathematical model with an effective thermal conductivity h e = const cannot be 
used because the relation T(b, T) calculated from it does not adequately reflect the relation 
Te(b, r) measured in the experiment. 

In the case of the use of model (1)-(3), the solution of the problem can be broken down 
into three stages: the first stage involves calculation of h e = const for the specified point 
of the structure from data from several experiments in quasisteady regimes Te(b, r) with dif- 
ferent durations. This calculation is performed by the method of solving inverse coefficient 
problems of heat conduction. Then tables of values of he(b, Tw, r e) are compiled. The sec- 
ond stage involves the use of the table of %e(b,_Tw, r e) and interpolation or extrapolation 
to find ~e for the specified quasisteady regime Tw of duration re; the third stage entails 
calculation of the temperatures at the specified point x = b in the thermal regime Tw(r) over 
the time ~e from model (1)-(3) with the use of the value of ~e found from the table. 

It is_necessary in the calculations to consider the results obtained with extrapolated 
values of h e are usually less accurate than results obtained with interpolated values. None- 
theless, despite their approximate character, they make it possible to evaluate the thermal 
state of the structure in the new regime. 

To obtain more accurate values of temperature in the structure for the new quasisteady 
regime, it is desirable to make the initial section of the relation Tw(r) equal or nearly 
equal to the initial section of the experimental regimes. 

Calculations performed on the basis of data from numerical experiments showed that it is 
possible to use the table of values of he(b, Tw, r e) obtained for several quasisteady regimes 
to calculate the temperature T(b, r) at a given point of a structure with a nonsteady heating 
regime Tw(r). 

Experiments conducted with mathematical model (i)-(3~ showed that the coefficient ~e in 
this case should be given in the form of a step function h e (~el, ... , ~ei, ... , ~el) which 
chanses in accordance with the temperature of the heating surface. To choose values of Twi 
and rei for determining ~ei, it is necessary to study the prescribed nonsteady temperature 
Eegime on the surface Tw(r) and to isolate several time intervals during which the regime 
Twi(~) can be taken as quasisteady. Having used the superposition principle, we can assume 
that heating during each previous interval creates the initial temperature field for the next 
interval, and we can examine heating on each interval independently of the adjacent intervals. 
Given this formulation, we determine ~e i on each interval from the table of values he(b, Tw, 
r e) with the use of the corresponding values of temperature Twi and time ~e i = ~i -- ~i-I, 
where~i El0, f] is the number of the interval; I is the number of intervals. 

As an example, we will present results of calculations of the temperature at a specified 
point in the case of one quasisteady and two nonsteady regimes. The temperature is calcula- 
ted from data from numerical experiments in which the model was multilayered cylindrical wall 
(Fig. i). We studied the thermal state of the structure at the point b = 0.026 m. The de- 
termination of the thermal state at this point by direct computational methods was complicated 
by the presence of an air interlayer in which the features of heat transfer were unknown. A 
table of values of he(b, Tw, r e ) was obtained from the numerical experiments for quasisteady 
regimes Tw(T) = i00, 200, 300, and 400~ with a maximum duration r e = 1800 sec. Here we 
solved a series of inverse heat-conduction problems for specified temperature regimes and the 
times r e = 720, 1200, and 1800 sec (Table i). 

349 



FigUre 2 shows the calculated result for the quasisteady regime Tw = 150~ with ~e = 
1080 sec, [e = 4.921 W/m.deg, and co = 10" J/kg.deg. The value of thermal conductivity [e 
was determined by interpolation from Table i. 

Values of effective thermal conductivity in Table 2 were used to calculate the tempera- 
ture relation T(~) at the point b = 0.026 m for nonsteady regimes (Fig. 3). In determining 
[ei, we broke each of the nonsteady regimes Tw(~) down into three sections with respect to 
time. In each section, heating was assumed to be quasisteady. Accordingly, each section in 
Table 1 was calculated by interpolation of the thermal conductivities. 

Comparison of the results calculated by simplified model (1)-(3) and data from a numeri- 
cal experiment on a multilayered cylindrical shell showed that the error of the relation found 
here T(T) is within the permissible range. 

NOTATION 

Te, Duration of regime; le, effective thermal conductivity; T(x, t), temperature; x, run- 
ning coordinate; T, running time; c, specific heat; 0, density; d, thickness of plate; q, heat 
flux; Tw, temperature of heated wall. 

lo 

2. 

. 

4. 

5. 
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GRID METHOD FOR CALCULATION OF FLOW AND HEAT EXCHANGE 

OF A VISCOUS INCOMPRESSIBLE LIQUID 

N. I. Nikitenko UDC 532.516:536.25 

An explicit difference method is described for calculation of the flow and heat 
exchange of an incompressible liquid, allowing calculations at quite large Rey- 
nolds numbers. 

The development of simple and effective numerical methods for modeling liquid flow and 
heat exchange processes at high Reynolds and Grashof numbers is of great importance in many 
fields of contemporary technology. Use of the algorithm presented in [i] by the present auth- 
or, involving a scaled explicit difference scheme, permits successful solution of the boundary- 
layer problem and natural convection of a gas [2]. 

The present study will offer a numerical method based on the scaled difference scheme for 
calculating flow and heat exchange of a viscous incompressible liquid over a wide range of 
Grashof and Reynolds numbers. 
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